So
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$$
and the matrix can be reduced in these steps:
$$\begin{bmatrix} 1 & 2 \\ 0 & -5 \end{bmatrix}$$
via an elementary matrix that looks like this:
$$ E_1 = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}$$
next:
$$\left [ \begin{matrix} 1 & 0 \\ 0 & -5 \end{matrix} \right ] $$
via an elementary matrix that looks like this:
$$ E_2 = \left [ \begin{matrix} 1 & \frac{2}{5} \\ 0 & 1 \end{matrix} \right ] $$
next:
$$\left [ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right ] $$
via an elementary matrix that looks like this:
$$ E_1 = \left [ \begin{matrix} 1 & 0 \\ 0 & \frac{-1}{5} \end{matrix} \right ] $$
So...
$$E_1^{-1} = \left [ \begin{matrix} 1 & 0 \\ 3 & 1 \end{matrix} \right ] $$
$$E_2^{-1} = \left [ \begin{matrix} 1 & \frac{-2}{5} \\ 0 & 1 \end{matrix} \right ] $$
$$E_3^{-1} = \left [ \begin{matrix} 1 & 0 \\ 0 & -5 \end{matrix} \right ] $$
And if I multiply them together I get:
$$E_1^{-1} * E_2^{-2} = \left [ \begin{matrix} 1 & \frac{-2}{5} \\ 3 & \frac{-1}{5} \end{matrix} \right ] = C$$
and
$$C * E_3^{-1} = \left [ \begin{matrix} 1 & 2 \\ 3 & 1 \end{matrix} \right ] $$
So this works out. Is this right?
Also question, the underlying premise of all of this is that $A$ is invertible right? And if $A$ is invertible, that means that a series of row operations can change it to the identity matrix. Why is this? This doesn't make intuitive sense to me.
Also, why does the product of elementary matrices equal $A$? What is the underlying theorem?
No comments:
Post a Comment