The primitive of f(x)=exp(−x2) has no analytical expression, even so, it is possible to evaluate ∫f(x) along the whole real line with a few tricks. How can one show that ∫∞−∞exp(−x2)dx=√π ?
Subscribe to:
Post Comments (Atom)
analysis - Injection, making bijection
I have injection f:A→B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...
-
Recently I took a test where I was given these two limits to evaluate: lim and $\lim_\limi...
-
So if I have a matrix and I put it into RREF and keep track of the row operations, I can then write it as a product of elementary matrices. ...
-
I need to give an explicit bijection between (0, 1] and [0,1] and I'm wondering if my bijection/proof is correct. Using the hint tha...
No comments:
Post a Comment