I have to study the convergence of the series
$$
\sum_{n = 1}^{+\infty}{\left(n\sin{\frac{1}{n}}\right)^n}
$$
and
$$
\sum_{n = 1}^{+\infty}{\left(\left(n\sin{\frac{1}{n}}\right)^n - 1\right)}.
$$
I know I should study the limit
$$
\lim_{n\to +\infty}{\left(n\sin{\frac{1}{n}}\right)^n}
$$
and that
$$
\lim_{n\to +\infty}{n\sin{\frac{1}{n}}} = 1
$$
but I don't see how it helps. Any ideas ?
Thank you in advance !
Answer
On the interval $(0,1)$ we have
$$ 1-\frac{x^2}{6} \leq \frac{\sin x}{x}\leq e^{-x^2/6} $$
hence $\left(n\sin\frac{1}{n}\right)^n$ behaves like $e^{-\frac{1}{6n}}=1-\frac{1}{6n}+O\left(\frac{1}{n^2}\right)$ for large values of $n$ and the given series are divergent.
No comments:
Post a Comment