Wednesday, August 21, 2019

Compute the square root of a complex number


This is a follow up to a previous question. I solved the equation $z^4 - 6z^2 + 25 = 0$ and I found four answer to be $z = \pm\sqrt{3 \pm 4i}$.


However someone in the comment said that the answer is going to be $2+i$, $2-i$, $-2+i$, $-2-i$. I cannot understand how we can find these roots from the answer that I found. How are we supposed to compute the square root of a complex number?


Answer



Hint:


Let $x + yi = \sqrt{a + bi}$. Then $(x+ yi)^2 = a + bi$. Then solve for $x$ and $y$ and you will generally have two sets of values for the square root $ \sqrt{a + bi}$


Example:


Say you want to compute $\sqrt{3 + 4i}$. Then assume the square root is $a + bi$. That is $a + bi = \sqrt{3 + 4i} \implies (a + bi)^2 = (a^2 - b^2) + 2abi = 3 + 4i$. Now solve the equations $ (a^2 - b^2) = 3$ and $2ab = 4$ to find $a$ and $b$.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...