Saturday, February 2, 2019

sequences and series - Convergence test on $sum_{n=2}^inftyfrac{1}{n^2ln{n}}$


Question
Consider the series $$\sum_{n=2}^\infty\frac{1}{n^2\ln{n}}$$ for each of the following convergence tests, state with justification if the test proves convergence, divergence or confirms neither


  • The Ratio Test

  • The Comparison Test

My attempt at an Answer
The Ratio test states that a series is:
- absolutely convergent if $\lim_{n\rightarrow\infty}\frac{\lvert u_{n+1}\rvert}{\lvert u_n\rvert}<1$,
- divergent if $\lim_{n\rightarrow\infty}\frac{\lvert u_{n+1}\rvert}{\lvert u_n\rvert}>1$, and
- undefined if $\lim_{n\rightarrow\infty}\frac{\lvert u_{n+1}\rvert}{\lvert u_n\rvert}=1$



so $$u_n=\frac{1}{n^2\ln{n}}$$ $$u_{n+1}=\frac{1}{(n+1)^2\ln{(n+1)}}$$ $$\lim_{n\rightarrow\infty}\frac{\lvert\frac{1}{(n+1)^2\ln{(n+1)}}\rvert}{\lvert\frac{1}{n^2\ln{n}}\rvert}=\lim_{n\rightarrow\infty}\frac{n^2\ln{(n)}}{(n+1)^2\ln{(n+1)}}$$ but $$n^2\ln{(n)}<(n+1)^2\ln{(n+1)}$$ $$\color{red}{\therefore\lim_{n\rightarrow\infty}\frac{n^2\ln{(n)}}{(n+1)^2\ln{(n+1)}}<1}$$ and so absolutely convergent
but $$\lim_{n\rightarrow\infty}\frac{n^2\ln{(n)}}{(n+1)^2\ln{(n+1)}}=1$$ and so is undefined for this test. $\square$


The comparison test has me stumped though.
How do I break $\frac{1}{n^2\ln{n}}$ into multiple terms to perform the comparison test?


Answer



Try $$\frac{1}{n^2\ln n}<\frac{1}{n^2}.$$


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...