Question
Consider the series ∞∑n=21n2lnn for each of the following convergence tests, state with justification if the test proves convergence, divergence or confirms neither
- The Ratio Test
- The Comparison Test
My attempt at an Answer
The Ratio test states that a series is:
- absolutely convergent if lim,
- divergent if \lim_{n\rightarrow\infty}\frac{\lvert u_{n+1}\rvert}{\lvert u_n\rvert}>1, and
- undefined if \lim_{n\rightarrow\infty}\frac{\lvert u_{n+1}\rvert}{\lvert u_n\rvert}=1
so u_n=\frac{1}{n^2\ln{n}} u_{n+1}=\frac{1}{(n+1)^2\ln{(n+1)}} \lim_{n\rightarrow\infty}\frac{\lvert\frac{1}{(n+1)^2\ln{(n+1)}}\rvert}{\lvert\frac{1}{n^2\ln{n}}\rvert}=\lim_{n\rightarrow\infty}\frac{n^2\ln{(n)}}{(n+1)^2\ln{(n+1)}} but n^2\ln{(n)}<(n+1)^2\ln{(n+1)} \color{red}{\therefore\lim_{n\rightarrow\infty}\frac{n^2\ln{(n)}}{(n+1)^2\ln{(n+1)}}<1} and so absolutely convergent
but \lim_{n\rightarrow\infty}\frac{n^2\ln{(n)}}{(n+1)^2\ln{(n+1)}}=1 and so is undefined for this test. \square
The comparison test has me stumped though.
How do I break \frac{1}{n^2\ln{n}} into multiple terms to perform the comparison test?
Answer
Try \frac{1}{n^2\ln n}<\frac{1}{n^2}.
No comments:
Post a Comment