Prove the limit using definition of limit lima→∞ 3a+25a+4=35
Answer: Let ε >0. We want to obtain the inequality |3a+25a+4−35|<ε
⇒|3a+25a+4−35| =|5(3a+2)−3(5a+4)5(5a+4)|=|−25(5a+4)|≤1a
Therefore we choose K∈N s.t K>1ε
⇒|3a+25a+4−35|≤1a≤1K<ε
Is this correct?
No comments:
Post a Comment