Sunday, February 17, 2019

real analysis - If a function is continuous and differentiable everywhere is the derivative continuous?



Suppose $f$ is continuous on $[a,b]$ and differentiable on (a,b). Does it follow that $f'$ is continuous on $(a,b)$?


Answer



The function,




$$f(x)=\begin{cases}
x^2\sin\frac{1}{x} & \text{ if } x\neq 0 \\
0 & \text{ if } x= 0
\end{cases}$$



is diffrentiable on $\mathbb{R}$



But,



$$f'(x)=\begin{cases}

2x\sin\frac{1}{x}-\cos\frac{1}{x} & \text{ if } x\neq 0 \\
0 & \text{ if } x= 0
\end{cases}$$



Is not continuous on $x=0$, since $\lim_{x\to 0}\cos\frac{1}{x}$ is not exist.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...