Suppose $f$ is continuous on $[a,b]$ and differentiable on (a,b). Does it follow that $f'$ is continuous on $(a,b)$?
Answer
The function,
$$f(x)=\begin{cases}
x^2\sin\frac{1}{x} & \text{ if } x\neq 0 \\
0 & \text{ if } x= 0
\end{cases}$$
is diffrentiable on $\mathbb{R}$
But,
$$f'(x)=\begin{cases}
2x\sin\frac{1}{x}-\cos\frac{1}{x} & \text{ if } x\neq 0 \\
0 & \text{ if } x= 0
\end{cases}$$
Is not continuous on $x=0$, since $\lim_{x\to 0}\cos\frac{1}{x}$ is not exist.
No comments:
Post a Comment