Sunday, February 17, 2019

Induction proof for a summation: $sum_{i=1}^n i^3 = left[sum_{i=1}^n iright]^2$




Prove by induction: $\sum_{i=1}^n i^3 = \left[\sum_{i=1}^n i\right]^2$. Hint: Use $k(k+1)^2 = 2(k+1)\sum i$.



Basis: $n = 1$ $\sum_{i=1}^1 i^3 = \left[\sum_{i=1}^1 i\right]^2 \to 1^3 = 1^2 \to 1 = 1$.



Hypothesis: Assume true for all $n \le k$.



So far I have the following:




$$\sum_{i=1}^{k+1} i^3 = (k+1)^3 + \sum_{i=1}^k i^3$$



$$(k+1)^3 + \left[\sum_{i=1}^k i\right]^2$$


Answer



For $n=k+1$, $$\sum_{i=1}^{k+1}i^3 = \sum_{i=1}^{k}i^3+(k+1)^3=(\sum_{i=1}^{k}i)^2+(k+1)^3=(\sum_{i=1}^{k}i)^2+k(k+1)^2+(k+1)^2$$



Now using the Hint: $k(k+1)^2 = 2(k+1)\sum i$.



$$=(\sum_{i=1}^{k}i)^2+2(k+1)\sum_{i=1}^k i+(k+1)^2=(\sum_{i=1}^{k+1}i)^2$$


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...