Friday, February 1, 2019

calculus - Integration Integrate $int_{-theta c}^{theta c} e^{-K/cos(theta)} , dtheta$


I'm trying to integrate $\displaystyle\int_{-\theta c}^{\theta c} e^{-K/\cos(\theta)} \, d\theta$


Numericaly the integrale look like clean, I try various method to have analytic form:


  • Mathematica

  • Taylor series

I wasn't able to find something. For details:


  • $0\lt\theta c\le\frac{\pi}{2}$

  • $0\lt K\lt \infty$

Have you any guess about this form?



Regards


Answer



Given: $$I = \displaystyle\int_{-\theta c}^{\theta c} e^{-K/\cos(\theta)} \, d\theta$$ * $0\lt\theta c\le\frac{\pi}{2}$, $0\lt K\lt \infty$


Then: \begin{align} I &= 2 \, \int_{0}^{\theta_{c}} e^{-K/\cos(\theta)} \, d\theta \\ &= 2 \, \sum_{n=0}^{\infty} \frac{(-K)^{n}}{n!} \, \int_{0}^{\theta_{c}} sec^{n}\theta \, d\theta \\ &= 2 \, \sum_{n=0}^{\infty} \frac{(-K)^{n}}{n!} \, \sin\theta_{c} \, {}_{2}F_{1}\left( \frac{1}{2}, \frac{n+1}{2}; \frac{3}{2}; \sin^{2}\theta_{c} \right). \\ \end{align}


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...