Monday, February 4, 2019

linear algebra - $f(x + y) = f(x) + f(y)$. Show that $f$ is continuous.

Let $f:\mathbb{R} \rightarrow \mathbb{R}$ and $ f(x + y) = f(x) + f(y)$.




How can I show that $f$ is continuous, when $f$ is continuous at $f(0)$?

No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...