Monday, May 28, 2018

real analysis - If ${a_{n}}>0$ and $sumlimits_{n=1}^{infty}a_n$ diverge

If $\{a_{n}\}>0$ and $\sum\limits_{n=1}^{\infty}a_n$ diverge.



The following series: converge, diverge, or neither?



$\sum\limits_{n=1}^{\infty} \dfrac{a_n}{1 + a_{n^2}} , \sum\limits_{n=1}^{\infty} \dfrac{a_n}{1 + na_{n}}$ and $\sum\limits_{n=1}^{\infty} \dfrac{a_n}{a_{n} +n^2 a-{n}}$ ?



1) $ \sum\limits_{n=1}^{\infty} \dfrac{a_n}{1 + na_{n}}$




let $ a_{n} = \frac{1}{n}.$ then $ \frac{a_n}{1 + na_{n}} = \frac{1}{2n} $



$ \sum\limits_{n=1}^{\infty} \dfrac{a_n}{1 + na_{n}} = $ $\sum\limits_{n=1}^{\infty} \frac{1}{2n}$ diverge .



Is this reasoning correct?

No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...