Monday, May 7, 2018

limits - Evaluating $lim_{xto3}frac{sqrt[3]{x+5}-2}{sqrt[4]{x-2}-1}$ without L'Hopital



I have the following limit question, where different indices of roots appear in the numerator and the denominator
$$\lim_{x\to3}\frac{\sqrt[3]{x+5}-2}{\sqrt[4]{x-2}-1}.$$



As we not allowed to use L'Hopital, I want to learn how we can proceed algebraically.


Answer



A possible purely algebraic way can use

$$a^n - b^n = (a-b)(a^{n-1} + a^{n-2}b + \cdots + ab^{n-2} + b^{n-1})$$



Using this formula note that




  • $\sqrt[4]{x-2} - 1 = \frac{\left(\sqrt[4]{x-2}\right)^4 - 1^4 }{\left(\sqrt[4]{x-2}\right)^3 + \left(\sqrt[4]{x-2}\right)^2+ \sqrt[4]{x-2} + 1} = \frac{x-3 }{\left(\sqrt[4]{x-2}\right)^3 + \left(\sqrt[4]{x-2}\right)^2+ \sqrt[4]{x-2} + 1}$

  • $\sqrt[3]{x+5} - 2 = \frac{\left(\sqrt[3]{x+5}\right)^3- 2^3 }{\left(\sqrt[3]{x+5}\right)^2+ \sqrt[3]{x+5}\cdot 2 + 2^2} = \frac{x-3 }{\left(\sqrt[3]{x+5}\right)^2+ \sqrt[3]{x+5}\cdot 2 + 2^2}$



So, you get

$$\frac{\sqrt[3]{x+5}-2}{\sqrt[4]{x-2}-1} = \frac{\left(\sqrt[4]{x-2}\right)^3 + \left(\sqrt[4]{x-2}\right)^2+ \sqrt[4]{x-2} + 1}{\left(\sqrt[3]{x+5}\right)^2+ \sqrt[3]{x+5}\cdot 2 + 2^2} \stackrel{x \to 3}{\longrightarrow}\frac{4}{12} = \frac{1}{3}$$


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...