How can we evaluate this integral?
π/4∫0√1−16sin2(x)dx
I tried a substitution
u=4sinx,dx=du√16−u2
hence the integration will be
u=2√2∫u=0√1−u2√16−u2du
But I could not complete the solution using this substitution.
Answer
\begin{align} \int_{0}^{\pi/4}\,\sqrt{\,{1 - 16\sin^{2}\left(\, x\,\right)}\,}\,\,\mathrm{d}x & = \int_{0}^{\pi/4}\,\sqrt{\,{1 - 4^{2}\sin^{2}\left(\, x\,\right)}\,}\,\,\mathrm{d}x \\[5mm] & = \bbox[10px,#ffd,border:1px groove navy]{\mathrm{E}\left(\,{{\pi \over 4},4}\,\right)} \end{align}
\displaystyle\mathrm{E} is a
Legendre Integral.
No comments:
Post a Comment