Sunday, May 6, 2018

calculus - Evaluating the integral intpi/40sqrt116sin2(x)mathop!mathrmdx




How can we evaluate this integral?
π/40116sin2(x)dx
I tried a substitution
u=4sinx,dx=du16u2
hence the integration will be



u=22u=01u216u2du
But I could not complete the solution using this substitution.


Answer




\begin{align} \int_{0}^{\pi/4}\,\sqrt{\,{1 - 16\sin^{2}\left(\, x\,\right)}\,}\,\,\mathrm{d}x & = \int_{0}^{\pi/4}\,\sqrt{\,{1 - 4^{2}\sin^{2}\left(\, x\,\right)}\,}\,\,\mathrm{d}x \\[5mm] & = \bbox[10px,#ffd,border:1px groove navy]{\mathrm{E}\left(\,{{\pi \over 4},4}\,\right)} \end{align}




\displaystyle\mathrm{E} is a
Legendre Integral.




No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f \colon A \rightarrow B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...