Evaluate lim
I tried by taking x^2 out of the root by taking it common.
i.e: \lim_{x \to -\infty} \left(\frac{x\sqrt{\frac{1}{x^2}+1}-x}{x} \right)
and then cancelling the x in numerator and denominator
\lim_{x \to -\infty} \left(\frac{\sqrt{\frac{1}{x^2}+1}-1}{1} \right)
then substituting x= -\infty in the equation, we get,
\lim_{x \to -\infty} \left(\frac{\sqrt{0+1}-1}{1} \right)
which equals to 0. But it is not the correct answer.
What have I done wrong.
Answer
When x\lt 0, we have
\sqrt{1+x^2}\not =x\sqrt{\frac{1}{x^2}+1}.
(Note that LHS is positive and that RHS is negative!)
You can set -x=t\gt 0.
\lim_{x\to -\infty}\frac{\sqrt{1+x^2}-x}{x}=\lim_{t\to\infty}\frac{\sqrt{1+(-t)^2}+t}{-t}=\lim_{t\to\infty}\left(-\sqrt{\frac{1+t^2}{t^2}}-1\right)=-2.
No comments:
Post a Comment