Do you know how to prove that cos(x2)+cos(3x2)+⋯+cos((2n−1)x2)=sinnx2sin(x2) using induction?
I have tried with n=1 which gives cosx2=sin(nx)(2sin1/2x)
I am not sure on how to expand with the trigonometric formulas.
With n=p+1 I get LHS: cos(2(n+1)−1) which I summaries to cos(2n+1) which should be cos2ncos1−sin2nsin1 plus the RHS sin(nx)(2sin1/2x)
RHS p+1=sin(n+1x)(2sin1/2x)
Any ideas on how to proceed would be very helpful.
Answer
If n∑r=1cos(2r−1)2x=sinnx2sinx2
holds true for n=m
m+1∑r=1cos(2r−1)2=sinmx2sinx2+cos[2(m+1)−1]2x
=sinmx+2sinx2cos(2m+1)2x2sinx2
Using Werner's formula, 2sinx2cos(2m+1)2x=sin(m+1)x−sinmx
No comments:
Post a Comment