Wednesday, May 9, 2018

calculus - Proving that $limlimits_{xtoinfty}f'(x) = 0$ when $limlimits_{xtoinfty}f(x)$ and $limlimits_{xtoinfty}f'(x)$ exist



I've been trying to solve the following problem:


Suppose that $f$ and $f'$ are continuous functions on $\mathbb{R}$, and that $\displaystyle\lim_{x\to\infty}f(x)$ and $\displaystyle\lim_{x\to\infty}f'(x)$ exist. Show that $\displaystyle\lim_{x\to\infty}f'(x) = 0$.


I'm not entirely sure what to do. Since there's not a lot of information given, I guess there isn't very much one can do. I tried using the definition of the derivative and showing that it went to $0$ as $x$ went to $\infty$ but that didn't really work out. Now I'm thinking I should assume $\displaystyle\lim_{x\to\infty}f'(x) = L \neq 0$ and try to get a contradiction, but I'm not sure where the contradiction would come from.


Could somebody point me in the right direction (e.g. a certain theorem or property I have to use?) Thanks


Answer



Hint: If you assume $\lim _{x \to \infty } f'(x) = L \ne 0$, the contradiction would come from the mean value theorem (consider $f(x)-f(M)$ for a fixed but arbitrary large $M$, and let $x \to \infty$).


Explained: If the limit of $f(x)$ exist, there is a horizontal asymptote. Therefore as the function approaches infinity it becomes more linear and thus the derivative approaches zero.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...