Saturday, June 24, 2017

real analysis - How to evaluate $lim_{xto 0} frac {(sin(2x)-2sin(x))^4}{(3+cos(2x)-4cos(x))^3}$?




$$\lim_{x\to 0} \frac {(\sin(2x)-2\sin(x))^4}{(3+\cos(2x)-4\cos(x))^3}$$



without L'Hôpital.



I've tried using equivalences with ${(\sin(2x)-2\sin(x))^4}$ and arrived at $-x^{12}$ but I don't know how to handle ${(3+\cos(2x)-4\cos(x))^3}$. Using $\cos(2x)=\cos^2(x)-\sin^2(x)$ hasn't helped, so any hint?


Answer



Hint: Note that
$$ 3+\cos(2x)-4\cos(x) = 3 + 2\cos^2(x) - 1 - 4\cos(x) = 2(\cos(x)-1)^2, $$
and that

$$ \sin(2x) - 2\sin(x) = 2\sin(x)\cos(x)-2\sin(x) = 2\sin(x)(\cos(x)-1). $$


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...