Let erfi(x) be the imaginary error function
erfi(x)=2√π∫x0ez2dz.
Consider the following parameterized integral
I(a)=∫∞0e−axerfi(√x)3 dx.
I found some conjectured special values of I(a) that are correct up to at least several hundreds of digits of precision:
I(3)?=1√2, I(4)?=14√3.
- Are these conjectured values correct?
- Is there a general closed-form formula for I(a)? Or, at least, are there any other closed-form special values of I(a) for simple (e.g. integer or rational) values of a?
Answer
Let I=[0,1] and notice
erfi(t)=2√π∫t0ez2dz⟹erfi(√t)=2√π√t∫Ietz2dz
The integral I we want can be rewritten as:
I=∫∞0e−at√t3(∫Ietz2dz)3dt=8√π3∫I3dxdydz[∫∞0√t3e−(a−x2−y2−z2)t)dt]=8√π3Γ(52)∫I3dxdydz√a−x2−y2−z25=8π∂2∂a2∫I3dxdydz√a−x2−y2−z2
Since the maximum value of x2+y2+z2 on I3 is 3, above rewrite is valid
when a>3.
To compute the integral, we will split the cube I3 into 6 simplices according to the
sorting order of x,y,z. On any one of these simplices, say the one for
1≥x≥y≥z≥0, introduce parameters (ρ,λ,μ)∈I3 such that (x,y,z)=(ρ,ρλ,ρλμ), we have:
I=48π∂2∂a2∫I3ρ2λdρdλdμ√a−ρ2−λ2ρ2(1+μ2)=48π∂2∂a2∫I2ρ2dρdμρ2(1+μ2)[−√a−ρ2−λ2ρ2(1+μ2)]1λ=0=48π∂2∂a2∫I2ρ2dρdμρ2(1+μ2)[√a−ρ2−√a−ρ2(2+μ2)]=24π∂∂a∫I2dρdμ1+μ2[1√a−ρ2−1√2+μ2√a2+μ2−ρ2)]=24π∂∂a∫Idμ1+μ2[arcsin(1√a)−1√2+μ2arcsin(√2+μ2a)]=24π∫Idμ1+μ2[−12√a3√1−1a−−12√a3√1−2+μ2a]=12πa∫Idμ1+μ2[1√a−2−μ2−1√a−1][1]=12πa[1√a−1arctan√a−1μ√a−2−μ2−1√a−1arctanμ]1μ=0=12πa√a−1[arctan(√a−1a−3)−π4]=12πa√a−1arctan(√a−1a−3−1√a−1a−3+1)[2]=6πa√a−1arctan1√(a−1)(a−3)
Notes
- [1] I am lazy, I get the leftmost integral in RHS from Wolfram alpha instead of deriving it myself.
[2] Let u=√a−1a−3, we have
2arctanu−1u+1=arctan2u−1u+11−(u−1u+1)2=arctanu2−12u=arctana−1a−3−12√a−1a−3=arctan1√(a−1)(a−3)
No comments:
Post a Comment