Saturday, April 22, 2017

The Limit of $frac {2^sqrt { log(log n)}}{log n}$



Wolfram tells me that the the limit is $0$ when $n$ goes to infinity.
Unfortunately, I have no idea how to prove it...



$$\lim_{n\to\infty}\frac {2^\sqrt { \log(\log n)}}{\log n}.$$




Any help would be appreciated,
thanks in advance.


Answer



Hints:




  1. The logarithm of this quantity is $\log 2\cdot\sqrt{\log(\log n)}-\log(\log n)$.


  2. When $n\to+\infty$, $\log(\log n)\longrightarrow$ $_________$.


  3. When $x\to+\infty$, $\log2\cdot\sqrt{x}-x\longrightarrow$ $_________$.


  4. Hence $\log2\cdot\sqrt{\log(\log n)}-\log(\log n)\longrightarrow$ $________$ when $n\to+\infty$.



  5. And finally $2^{\sqrt{\log(\log n)}}/\log n\longrightarrow$ $_________$ when $n\to+\infty$.



No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...