Friday, April 14, 2017

sequences and series - Limits Problem : $lim_{n to infty}[(1+frac{1}{n})(1+frac{2}{n})cdots(1+frac{n}{n})]^{frac{1}{n}}$ is equal to..





Problem:



How to find the following limit :



$$\lim_{n \to \infty}[(1+\frac{1}{n})(1+\frac{2}{n})\cdots(1+\frac{n}{n})]^{\frac{1}{n}}$$ is equal to




(a) $\frac{4}{e}$



(b) $\frac{3}{e}$



(c) $\frac{1}{e}$



(d) $e$



Please suggest how to proceed in this problem thanks...


Answer




$$\log\left(\lim_{n \to \infty}[(1+\frac{1}{n})(1+\frac{2}{n})\cdots(1+\frac{n}{n})]^{\frac{1}{n}}\right) =\lim_{n \to \infty}\frac{\log(1+\frac{1}{n})+\log(1+\frac{2}{n})+\cdots+\log(1+\frac{n}{n})}{n} =\int_{1}^2 \log(1+x)dx= [x\log(x)-x]_{x=1}^{x=2}=2\log(2)-1$$



This yields the solution $e^{2\log(2)-1}=4/e$.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...