Tuesday, April 25, 2017

calculus - Evaluate the limit of the sequence: limntoinftyfracsqrt(n1)!(1+sqrt1)cdot(1+sqrt2)cdot(1+sqrt3)cdots(1+sqrtn)



Evaluate the limit of the sequence:



lim







My try:



Stolz-cesaro: The limit of the sequence is \frac{\infty}{\infty}



\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}



For our sequence:



\lim_{n\to\infty}\frac{\sqrt{(n-1)!}}{(1+\sqrt{1})\cdot(1+\sqrt{2})\cdot (1+\sqrt{3})\cdots (1+\sqrt{n})}=\lim_{n\to\infty}\frac{\sqrt{n!}-\sqrt{(n-1)!}}{(1+\sqrt{1})\cdot(1+\sqrt{2})\cdot (1+\sqrt{3})\cdots (1+\sqrt{n})\cdot(1+\sqrt{n+1})-(1+\sqrt{1})\cdot(1+\sqrt{2})\cdot (1+\sqrt{3})\cdots (1+\sqrt{n})}=\lim_{n\to\infty}\frac{\sqrt{(n-1)!}\cdot(\sqrt{n-1})}{\left((1+\sqrt{1})\cdot(1+\sqrt{2})\cdot (1+\sqrt{3})\cdots (1+\sqrt{n})\right)\cdot(\sqrt{n}+1)}




Which got me nowhere.


Answer



Consider:
(1+\sqrt{1})\cdot(1+\sqrt{2})\cdot (1+\sqrt{3})\cdots (1+\sqrt{n})



Take the root from each pair of parentheses and multiply them, then:
(1+\sqrt{1})\cdot(1+\sqrt{2})\cdot (1+\sqrt{3})\cdots (1+\sqrt{n}) > \sqrt{n!} \iff \\ \iff \frac{1}{(1+\sqrt{1})\cdot(1+\sqrt{2})\cdot (1+\sqrt{3})\cdots (1+\sqrt{n})} < \frac{1}{\sqrt{n!}}
Going back to original we have that:
\frac{\sqrt{(n-1)!}}{(1+\sqrt{1})\cdot(1+\sqrt{2})\cdot (1+\sqrt{3})\cdots (1+\sqrt{n})} \le \frac{\sqrt{(n-1)!}}{\sqrt{n!}} = \frac{1}{\sqrt n}



But the function is greater than 0 and hence using squeeze theorem we conclude that:
0 \le \lim_{n\to\infty}x_n \le \lim_{n\to\infty}\frac{1}{\sqrt n} = 0



Hence the limit is 0.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f \colon A \rightarrow B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...