$$\dfrac{154}{3.2-x} = \dfrac{66}{1.6-x}$$
How can that equation be simplified as such? :
$$154(1.6-x) = 66(3.2-x)$$
Can someone explain?
Answer
Apart from the fact that, as long as denominators are not zero, the formal definition of fractions is that the two equations are equivalent, we have:
$$
\begin{align}
\frac{154}{3.2-x} &= \frac{66}{1.6-x}\\
\frac{154}{3.2-x}\cdot (1.6 - x)& = \frac{66}{1.6-x}\cdot (1.6 - x)\\
\frac{154}{3.2-x}\cdot (1.6 - x) &= \frac{66}{\color{red}{(1.6-x)}}\color{red}{\cdot (1.6 - x)}\\
\frac{154}{3.2-x}\cdot (1.6 - x) &= 66\\
\frac{154}{3.2-x}\cdot (1.6 - x)\cdot(3.2-x) &= 66\cdot(3.2 - x)\\
\frac{154}{\color{red}{(3.2-x)}}\cdot (1.6 - x)\cdot\color{red}{(3.2-x)} &= 66\cdot(3.2 - x)\\
154\cdot (1.6 - x) &= 66\cdot(3.2 - x)
\end{align}
$$
where all the red parts cancel eachother.
No comments:
Post a Comment