valid for all s≥1
β(s)=∞∑n=01(2n+1)s
The particular value of Γ(14)=3.6256099...
Euler's constant is defined by lim
Euler also showed that \gamma=\sum_{n=1}^{\infty}\left(\frac{1}{n}-\ln\left(\frac{n+1}{n}\right)\right)
Where H_n=\sum_{k=1}^{n}\frac{1}{k}
Show that,
\sum_{n=1}^{\infty}\left[\frac{\beta(2n)}{n}-\ln\left(\frac{n+1}{n}\right)\right] =\gamma+\ln\left(\frac{16\pi^2}{\Gamma^4\left(\frac{1}{4}\right)}\right)
We are greatly appreciated if anyone can answer this identity.
Answer
With the same approach to a recent question of yours,
\beta(2n)-1=\frac{1}{\Gamma(2n)}\int_{0}^{+\infty}\frac{x^{2n-1} e^{-3x}}{1+e^{-2x}}\,dx
hence:
\sum_{n\geq 1}\frac{\beta(2n)-1}{n} = 2\int_{0}^{+\infty}\frac{e^{-3x}}{1+e^{-2x}}\cdot\frac{\cosh x-1}{x}\,dx.
By Frullani's theorem, or differentiation under the integral sign (Feynman's trick):
2\int_{0}^{+\infty}\frac{\cosh x-1}{x}e^{-(3+2m)x}\,dx =-\log(m+1)+2\log\left(m+\frac{3}{2}\right)-\log(m+2),
hence:
\sum_{n\geq 1}\frac{\beta(2n)-1}{n} = \sum_{m\geq 0}(-1)^m\left(-\log(m+1)+2\log\left(m+\frac{3}{2}\right)-\log(m+2)\right)
is the logarithm of an infinite product that can be computed from the limit product representation for the \Gamma function. Namely:
\sum_{m\geq 0}\left[\log\left(2m+\frac{3}{2}\right)-\frac{1}{2}\log(2m+1)-\log\left(2m+\frac{5}{2}\right)+\frac{1}{2}\log(2m+3)\right]\\=\frac{\log 2}{2}-\log\Gamma\left(\frac{3}{4}\right)+\log\Gamma\left(\frac{5}{4}\right).
Now it is enough to use the \Gamma reflection formula and the identity \Gamma(z+1)=z\,\Gamma(z) to express your sum in terms of \gamma and \Gamma\left(\frac{1}{4}\right). The original identity is, in fact, equivalent to:
\prod_{m\geq 0}\frac{(4m+3)(4m+3)(4m+6)}{(4m+2)(4m+5)(4m+5)}=\color{red}{\frac{1}{16\pi^2}\,\Gamma\left(\frac{1}{4}\right)^4}.
No comments:
Post a Comment