$dx=\frac {dx}{dt}dt $. I know that this deduction is obvious from the chain rule, given that we treat our dx and dt as just numbers. But I find it quite unsatisfactory to think of it in that sense. Is there a better / more "calculus-inclined" way of thinking about this equality. Can you please explain both the LHS and RHS individually.
Subscribe to:
Post Comments (Atom)
analysis - Injection, making bijection
I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...
-
So if I have a matrix and I put it into RREF and keep track of the row operations, I can then write it as a product of elementary matrices. ...
-
I need to give an explicit bijection between $(0, 1]$ and $[0,1]$ and I'm wondering if my bijection/proof is correct. Using the hint tha...
-
Recently I took a test where I was given these two limits to evaluate: $\lim_\limits{h \to 0}\frac{\sin(x+h)-\sin{(x)}}{h}$ and $\lim_\limi...
No comments:
Post a Comment