I need to calculate limn→∞(n!nn)1n
My try:
When n! is large we have n!≈(ne)n√2πn (Stirling approximation) limn→∞(n!nn)1n=limn→∞((ne)n√2πn)1nn
Simplifying we get, 1elimn→∞(√2πn)1n
I am stuck here. I don't know how to proceed further.
Answer
Another way :
Let A=limn→∞(n!nn)1n
⟹lnA=limn→∞1n∑1≤r≤nlnrn
Now use limn→∞1nn∑r=1f(rn)=∫10f(x)dx
No comments:
Post a Comment