Intuitively it seems that both concepts should be disjoint because if a function is discrete then it has some holes on it and if a function is continuous then it doesn't have holes. But now I'm not sure because, from my understanding, a function may be continuous at x0 if x0 is an accumulation point in its domain such that limx→x0f=f(x0). So for example the function f:Q→R such that f(x)=x is such that limx→x0f=x0=f(x0) and then f is continuous at any point in its domain but also it's discrete. What I'm a missing?
Subscribe to:
Post Comments (Atom)
analysis - Injection, making bijection
I have injection f:A→B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...
-
Recently I took a test where I was given these two limits to evaluate: limh→0sin(x+h)−sin(x)h and $\lim_\limi...
-
I need to give an explicit bijection between (0,1] and [0,1] and I'm wondering if my bijection/proof is correct. Using the hint tha...
-
So if I have a matrix and I put it into RREF and keep track of the row operations, I can then write it as a product of elementary matrices. ...
No comments:
Post a Comment