Friday, June 7, 2019

sequences and series - Prove that if $k in mathbb {N}$ and $a>1$, then $limlimits_{ntoinfty} frac{n^k}{a^n}=0$

Prove that if $k \in \mathbb {N}$ and $a>1$, then $\lim\limits_{n\to\infty} \frac{n^k}{a^n}=0$



I have this, I want to know if what I did is correct.




Let be $a^n>1>0$, then:



$1>\frac{1}{a^n}$



Then:



$|\frac{1}{a^n}|<1$



Aplying archimedean property,for $ε>0$ exists $n \in \mathbb {N}$ such that:




$nε>n^{k+1}$



Then:



$ε>\frac{n^{k+1}}{n}=n^k$



Let be $ε>0$, exists $N=max(1,ε)$ that if $n>N$



$|\frac{n^k}{a^n}-0|=|\frac{n^k}{a^n}|$




$=\frac{n^k}{a^n}$



$<ε (1)= ε$



Therefore the sequences converges to zero.



Thank, you.

No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...