Prove that if $k \in \mathbb {N}$ and $a>1$, then $\lim\limits_{n\to\infty} \frac{n^k}{a^n}=0$
I have this, I want to know if what I did is correct.
Let be $a^n>1>0$, then:
$1>\frac{1}{a^n}$
Then:
$|\frac{1}{a^n}|<1$
Aplying archimedean property,for $ε>0$ exists $n \in \mathbb {N}$ such that:
$nε>n^{k+1}$
Then:
$ε>\frac{n^{k+1}}{n}=n^k$
Let be $ε>0$, exists $N=max(1,ε)$ that if $n>N$
$|\frac{n^k}{a^n}-0|=|\frac{n^k}{a^n}|$
$=\frac{n^k}{a^n}$
$<ε (1)= ε$
Therefore the sequences converges to zero.
Thank, you.
No comments:
Post a Comment