Friday, June 14, 2019

limits - Prove $[sin x]' = cos x$ without using $limlimits_{xto 0}frac{sin x}{x} = 1$

I came across this question: How to prove that $\lim\limits_{x\to0}\frac{\sin x}x=1$?


From the comments, Joren said:




L'Hopital Rule is easiest: $\displaystyle\lim_{x\to 0}\sin x = 0$ and $\displaystyle\lim_{x\to 0} = 0$, so $\displaystyle\lim_{x\to 0}\frac{\sin x}{x} = \lim_{x\to 0}\frac{\cos x}{1} = 1$.



Which Ilya readly answered:



I'm extremely curious how will you prove then that $[\sin x]' = \cos x$



My question: is there a way of proving that $[\sin x]' = \cos x$ without using the limit $\displaystyle\lim_{x\to 0}\frac{\sin x}{x} = 1$. Also, without using anything else $E$ such that, the proof of $E$ uses the limit or $[\sin x]' = \cos x$.



All I want is to be able to use L'Hopital in $\displaystyle\lim_{x\to 0}\frac{\sin x}{x}$. And for this, $[\sin x]'$ has to be evaluated first.



Alright... the definition that some requested.



Def of sine and cosine: Have a unit circumference in the center of cartesian coordinates. Take a dot that belongs to the circumference. Your dot is $(x, y)$. It relates to the angle this way: $(\cos\theta, \sin\theta)$, such that if $\theta = 0$ then your dot is $(1, 0)$.


Basically, its a geometrical one. Feel free to use trigonometric identities as you want. They are all provable from geometry.

No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...