The following theorem is true?
Theorem. Let $U\subset \mathbb{R}^m$ (open set) and $f:U\longrightarrow \mathbb{R}^n$ a differentiable function.
If $f$ is uniformly differentiable $ \Longrightarrow$ $f':U\longrightarrow \mathcal{L}(\mathbb{R}^m,\mathbb{R}^n)$ is uniformly continuous.
Note that $f$ is uniformly differentiable if
$\forall \epsilon>0\,,\exists \delta>0:|\!|h|\!|<\delta,\color{blue}{[x,x+h]\subset U} \Longrightarrow |\!|f(x+h)-f(x)-f'(x)(h)|\!|<\epsilon |\!|h|\!| $ (edited)
$\forall \epsilon>0\,,\exists \delta>0:|\!|h|\!|<\delta,\color{blue}{x,x+h\in U} \Longrightarrow |\!|f(x+h)-f(x)-f'(x)(h)|\!|<\epsilon |\!|h|\!|\qquad \checkmark$
Any hints would be appreciated.
Answer
Let's build off of Tomas' last remark, slightly modified:
Let $t>0$ be small. Then
\begin{eqnarray}
\|f'(x)-f'(y)\| &=& \frac{1}{t}\sup_{\|w\|=1}\|\langle f'(x)-f'(y),tw\rangle\| \nonumber \\
&\leq& \frac{1}{t}\sup_{\|w\|=1}\|f(x+tw)-f(x)-[f(y+tw)-f(y)]\| + 2\epsilon \nonumber
\end{eqnarray}
It suffices to show that this weighted combination of four close points on a parallelogram can be bounded by $C\epsilon t$.
Let us bound $\|f(x+h) - f(x) + f(x+k) - f(x+h+k)\|_2 \leq C\epsilon(\|h\|+\|k\|)$, and then in this case $\|h\|=t$ and $\|k\|\leq \delta$, so if $t=\delta$ the whole expression is bounded by a constant times $\epsilon$.
Note applying uniform differentiability three times in directions $h,k,$ and $h+k$, for small $\|h\|,\|k\|$ we have
\begin{eqnarray*}
\|f(x+h) - f(x) + f(x+k) - f(x+h+k)\| &\leq& \|f'(x)h + f'(x)k - f'(x)(h+k)\|_2 + 3\epsilon(\|h\|+\|k\|)\\
&=& 3\epsilon(\|h\|+\|k\|)
\end{eqnarray*}
No comments:
Post a Comment