Thursday, June 13, 2019

combinatorics - Evaluating $limlimits_{nto infty }sumlimits_{k=0}^n:(2n)^{-k}binom{n}{k}$



$$\lim _{n\to \infty }\sum _{k=0}^n\:\frac{\binom{n}{k}}{\left(2n\right)^k}$$
I've got to the form:
$$\lim _{n\to \infty }\frac{2^n\left(2n-1\right)}{\left(2n\right)^{n+1}-1}=\lim _{n\to \infty }\frac{2^{n+1}n-2^n}{2^{n+1}n^{n+1}-1}$$



And it should be $e^{1/2}$ but I always get $0$. I know it's just easy but I don't get it.



Answer



First use the binomial theorem:



$$\sum_{k=0}^n\binom{n}k\left(\frac1{2n}\right)^k=\left(1+\frac1{2n}\right)^n\;.$$



Now



$$\lim_{n\to\infty}\left(1+\frac1{2n}\right)^n=\lim_{n\to\infty}\left(\left(1+\frac1{2n}\right)^{2n}\right)^{1/2}=\left(\lim_{n\to\infty}\left(1+\frac1{2n}\right)^{2n}\right)^{1/2}\;,$$



and you should know what the last limit there is.



No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...