$$\lim _{n\to \infty }\sum _{k=0}^n\:\frac{\binom{n}{k}}{\left(2n\right)^k}$$
I've got to the form:
$$\lim _{n\to \infty }\frac{2^n\left(2n-1\right)}{\left(2n\right)^{n+1}-1}=\lim _{n\to \infty }\frac{2^{n+1}n-2^n}{2^{n+1}n^{n+1}-1}$$
And it should be $e^{1/2}$ but I always get $0$. I know it's just easy but I don't get it.
Answer
First use the binomial theorem:
$$\sum_{k=0}^n\binom{n}k\left(\frac1{2n}\right)^k=\left(1+\frac1{2n}\right)^n\;.$$
Now
$$\lim_{n\to\infty}\left(1+\frac1{2n}\right)^n=\lim_{n\to\infty}\left(\left(1+\frac1{2n}\right)^{2n}\right)^{1/2}=\left(\lim_{n\to\infty}\left(1+\frac1{2n}\right)^{2n}\right)^{1/2}\;,$$
and you should know what the last limit there is.
No comments:
Post a Comment