Monday, October 1, 2018

calculus - Find formula of sum $sin (nx)$




I wonder if there is a way to calculate the



$$S_n=\sin x + \sin 2x + … + \sin nx$$



but using only derivatives ?


Answer



Using telescopic sums:




$$ \sin(mx)\sin(x/2) = \frac{1}{2}\left(\cos\left((m-1/2)x\right)-\cos\left((m+1/2)x\right)\right)$$
Hence:
$$ S_n \sin\frac{x}{2} = \frac{1}{2}\left(\cos\frac{x}{2}-\cos\left(\left(n+\frac{1}{2}\right)x\right)\right)=\sin\frac{nx}{2}\cdot\sin\frac{(n+1)x}{2}.$$


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...