Find the real and imaginary part of f(z)=(−3y2+6ixy+3x2)e2(iy+x)
I came up with: Re=e2x(−3y2cos(y)−6xysin(y)+3x2cos(y))Im=ie2x(−3y2sin(y)+6xycos(y)+3xsin(y))
Answer
Yes we can use that
e2(iy+x)=e2x(cos(2y)+isin(2y))
and therefore
ℜ(f(z))=(−3y2+3x2)e2xcos(2y)−6xye2xsin(2y)
ℑ(f(z))=6xye2xcos(2y)+(−3y2+3x2)e2xsin(2y)
Recall that real part and imaginary parts are real numbers.
No comments:
Post a Comment