I'm trying to find $\lim_{n\to\infty}(\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + ... + \frac{1}{\sqrt{n^2+n}})$.
- I tried to use the squeeze theorem, failed.
- I tried to use a sequence defined recursively: $a_{n+1} = {a_n} + \frac{1}{\sqrt{(n+1)^2 +n+1}}$. It is a monotone growing sequence, for every $n$, $a_n > 0$. I also defined $f(x) = \frac{1}{\sqrt{(x+1)^2 +x+1}}$. So $a_{n+1} = a_n + f(a_n)$. But I'm stuck.
How can I calculate it?
Answer
It looks squeezable.
\begin{align} \frac{n}{\sqrt{n^2+n}} \le \sum_{k=1}^n\frac{1}{\sqrt{n^2+k}} \le \frac{n}{\sqrt{n^2+1}} \\ \\ \frac{1}{\sqrt{1+\frac{1}{n}}} \le \sum_{k=1}^n\frac{1}{\sqrt{n^2+k}} \le \frac{1}{\sqrt{1+\frac{1}{n^2}}} \end{align}
No comments:
Post a Comment