Here is what I did, tell me whether I did correct or not:
y=cosA+cosB+cosCy=cosA+2cos(B+C2)cos(B−C2)y=cosA+2sin(A2)cos(BC2)since A+B+C=π
Now for maximum value of y if we put cos(B−C2)=1 then
y≤cosA+2sin(A2)y≤1−2sin2(A2)+2sin(A2)
By completing the square we get
y≤32−2(sinA2−12)2
ymax at \sin\frac A2 = \frac 12 and y_{\min} > 1 at \sin \frac A2>0 because it is a ratio of two sides of a triangle.
Is this solution correct? If there is a better solution then please post it here. Help!
Answer
We can prove \cos A+\cos B+\cos C=1+4\sin\frac A2\sin\frac B2\sin\frac C2
Now, 0<\dfrac A2<90^\circ\implies\sin\dfrac A2>0
For the other part,
y=1-2\sin^2\frac A2+2\sin\frac A2\cos\frac{B-C}2
\iff2\sin^2\frac A2-\sin\frac A2\cdot2\cos\frac{B-C}2+y-1=0 which is a Quadratic equation in \sin\dfrac A2 which is real
So, the discriminant must be \ge0
i.e., \left(2\cos\dfrac{B-C}2\right)^2-4\cdot2(y-1)\ge0
\iff 4y\le4+2\cos^2\dfrac{B-C}2=4+1+\cos(B-C)\le4+1+1
The equality occurs iff \cos(B-C)=1\iff B=C as $0
where \sin\dfrac A2=\dfrac12\implies\dfrac A2=30^\circ as 0<\dfrac A2<90^\circ
No comments:
Post a Comment