How to evaluate $$\sum_{k=1} ^{n-1} \frac{\sin (k\theta)}{\sin \theta}$$
Any help ? I tried to use difference method. But I'm not getting there.
Answer
HINT:
Use the Prosthaphaeresis Formula,
$$\cos((k-1)\theta)-\cos((k+1)\theta)=2\sin(k\theta)\sin(\theta)$$
and then sum the resulting telescoping series.
No comments:
Post a Comment