I'm looking for a proof of this identity but where j=m not j=0
http://www.proofwiki.org/wiki/Sum_of_Binomial_Coefficients_over_Upper_Index
$$\sum_{j=m}^n\binom{j}{m}=\binom{n+1}{m+1}$$
I'm looking for a proof of this identity but where j=m not j=0
http://www.proofwiki.org/wiki/Sum_of_Binomial_Coefficients_over_Upper_Index
$$\sum_{j=m}^n\binom{j}{m}=\binom{n+1}{m+1}$$
I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...
No comments:
Post a Comment