Sunday, July 1, 2018

limits - Evaluating $limlimits_{ntoinfty}(a_1^n+dots+a_k^n)^{1over n}$ where $a_1 ge cdotsge a_k ge 0$




Need to find $\lim\limits_{n\to\infty}(a_1^n+\dots+a_k^n)^{1\over n}$ Where $a_1\ge\dots\ge a_k\ge 0$



I thought about Cauchy Theorem on limit $\lim\limits_{n\to\infty}\dfrac{a_1+\dots+a_n}{n}=\lim a_n$ and something like what happen if all $a_i=0$ or $a_1=\dots=a_k$, but may be something I am thinking wrong?



Maybe it is too simple but I am not getting it; please help.


Answer



Note that

$$a_1=[a_1^n]^{1/n}\leq [a_1^n+\cdots+a_k^n]^{1/n}\leq [ka_1^n]^{1/n}=k^{1/n}a_1$$
and apply squeeze theorem.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...