Tuesday, July 24, 2018

trigonometry - Prove that $ sumlimits_{n=1}^N cos(2pi n/N)= 0 $?





Is there a way to algebraically prove that $ \sum\limits_{n=1}^N \cos(2 \pi n/N) = 0 $ for any $N > 0$? (And if so, how?)


Answer



Hint :



$$\sum_{n=1}^N\cos\left(\frac{2\pi n}{N}\right)=\Re\left(\sum_{n=1}^N\exp\left(\frac{2i\pi n}{N}\right)\right)$$



and also :



$$\forall\theta\in\mathbb{R},\,\forall n\in\mathbb{N},\,\exp(i n\theta)=\left[\exp(i\theta)\right]^n$$


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...