Wednesday, July 25, 2018

real analysis - Limit of $L^p$ norm



Could someone help me prove that given a finite measure space $(X, \mathcal{M}, \sigma)$ and a measurable function $f:X\to\mathbb{R}$ in $L^\infty$ and some $L^q$, $\displaystyle\lim_{p\to\infty}\|f\|_p=\|f\|_\infty$?


I don't know where to start.


Answer



Fix $\delta>0$ and let $S_\delta:=\{x,|f(x)|\geqslant \lVert f\rVert_\infty-\delta\}$ for $\delta<\lVert f\rVert_\infty$. We have $$\lVert f\rVert_p\geqslant \left(\int_{S_\delta}(\lVert f\rVert_\infty-\delta)^pd\mu\right)^{1/p}=(\lVert f\rVert_\infty-\delta)\mu(S_\delta)^{1/p},$$ since $\mu(S_\delta)$ is finite and positive. This gives $$\liminf_{p\to +\infty}\lVert f\rVert_p\geqslant\lVert f\rVert_\infty.$$ As $|f(x)|\leqslant\lVert f\rVert_\infty$ for almost every $x$, we have for $p>q$, $$ \lVert f\rVert_p\leqslant\left(\int_X|f(x)|^{p-q}|f(x)|^qd\mu\right)^{1/p}\leqslant \lVert f\rVert_\infty^{\frac{p-q}p}\lVert f\rVert_q^{q/p},$$ giving the reverse inequality.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...