Saturday, July 21, 2018

calculus - Why $sum_{k=1}^{infty} frac{k}{2^k} = 2$?




Can you please explain why
$$
\sum_{k=1}^{\infty} \dfrac{k}{2^k} =
\dfrac{1}{2} +\dfrac{ 2}{4} + \dfrac{3}{8}+ \dfrac{4}{16} +\dfrac{5}{32} + \dots =
2
$$




I know $1 + 2 + 3 + ... + n = \dfrac{n(n+1)}{2}$


Answer



\begin{gather*}
|x|<1:\quad f(x)=\sum_{n=1}^{\infty} x^n=\frac{x}{1-x} \\
xf'(x)=\sum_{n=1}^{\infty} nx^n=\frac{x}{(1-x)^2}
\end{gather*}



Let $x=\frac{1}{2}$


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...