I was trying to prove this trigonometric identity, it looks like using the elementary relations should be enough, but I still can't find how:
12sin2a sin2b+cos2a cos2b=13+23(32cos2a−12)(32cos2b−12)
Thank you!
(taken from Celestial Mechanics)
Answer
The left hand side is
12sin2asin2b+cos2acos2b=12(1−cos2a)(1−cos2b)+cos2acos2b=12−12cos2a−12cos2b+32cos2acos2b.
The right hand side is
13+23(32cos2a−12)(32cos2b−12)=13+23(94cos2cos2b−34cos2a−34cos2b+14)
=13+32cos2acos2b−12cos2a−12cos2b+16
=12−12cos2a−12cos2b+32cos2acos2b.
No comments:
Post a Comment