I need to find the limit:
lim
So I know that the limit is 1.
Using Squeeze theorem
? \leq \left(\frac{(1 + \frac{1}{n^2})^{n^2}}{e}\right)^n \leq \left(\frac{e}{e}\right)^n \rightarrow\ 1
What should be instead ? ? Is it possible to solve in another way?
Unfortunately, I can't use L'Hôpital Rule or Series Expansion in this task.
Answer
Note that:
\left(\frac{(1 + \frac{1}{n^2})^{n^2}}{(1 + \frac{1}{n^2})^{n^2+1}}\right)^n=\left(1 + \frac{1}{n^2}\right)^{-n}\leq \left(\frac{(1 + \frac{1}{n^2})^{n^2}}{e}\right)^n \leq \left(\frac{e}{e}\right)^n=1
Since:
\left(1 + \frac{1}{n^2}\right)^{-n}\to 1
By Squeeze Theorem:
\lim_{n\to \infty } \left(\frac{(1 + \frac{1}{n^2})^{n^2}}{e}\right)^n=1
No comments:
Post a Comment