Monday, January 8, 2018

probability - Intuitive explanation for $mathbb{E}X= int_0^infty 1-F(x) , dx$

I can see by manipulating the expression why $\mathbb{E}X$ works out to be $\int_0^\infty 1-F(x)\,dx$, where $F$ is the distribution function of $X$, but what is an intuitive explanation for why that is true? If at each point we sum the probability $\mathbb{P}(X>x)$, why should we end up with the expectation?



Thanks

No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...