Thursday, January 18, 2018

calculate the limit of this sequence sqrt1+sqrt1+sqrt1+sqrt1..






i am trying to calculate the limit of an:=1+1+1+1+.. with a0:=1 and an+1:=1+an i am badly stuck not knowing how to find the limit of this sequence and where to start the proof. i did some calculations but still cannot figure out the formal way of finding the limit of this sequence. what i tried is:
(1+(1+(1+..)12)12)12 but i am totally stuck here


Answer



We (inductively) show following properties for sequence given by an+1=1+an,a0=1


  1. an0 for all nN

  2. (an) is monotonically increasing

  3. (an) is bounded above by 2

Then by Monotone Convergence Theorem, the sequence converges hence the limit of sequence exists. Let liman=a then liman+1=a as well. Using Algebraic Limit Theorem, we get


liman+1=1+limana=1+a



Solving above equation gives out limit. Also we note that from Order Limit Theorem, we get an0liman0.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f:AB and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...