Let $1\leq m\leq n$ be positive integers. I will appreciate any help proving the following identity
$$
\sum_{k=n}^{n+m}(-1)^k\binom{k-1}{n-1}\binom{n}{k-m}=0
$$
Thanks!
Answer
Here we have Chu-Vandermonde's Identity in disguise.
We obtain for $1\leq m\leq n$
\begin{align*}
\color{blue}{\sum_{k=n}^{n+m}}&\color{blue}{(-1)^k\binom{k-1}{n-1}\binom{n}{k-m}}\\
&=\sum_{k=0}^m(-1)^{k+n}\binom{n+k-1}{n-1}\binom{n}{k+n-m}\tag{1}\\
&=\sum_{k=0}^m(-1)^{k+n}\binom{n+k-1}{k}\binom{n}{m-k}\tag{2}\\
&=(-1)^n\sum_{k=0}^m\binom{-n}{k}\binom{n}{m-k}\tag{3}\\
&=(-1)^n\binom{0}{m}\tag{4}\\
&\,\,\color{blue}{=0}
\end{align*}
Comment:
In (1) we shift the index to start with $k=0$.
In (2) we apply the binomial identity $\binom{p}{q}=\binom{p}{p-q}$ twice.
In (3) we apply the binomial identity $\binom{-p}{q}=\binom{p+q-1}{q}(-1)^q$.
In (4) we finally apply the Chu-Vandermonde identity.
No comments:
Post a Comment