Tuesday, February 28, 2017

algebra precalculus - Problem on multiplication formulae.



Given $a^3 + b^{3}+ c^{3}= (a+b+c)^{3} $.



Prove that for any natural number $n$,
$$a^{2n+1}+b^{2n+1}+c^{2n+1}=(a+b+c)^{2n+1}$$



I first tried mathematical induction but did not proceed anywhere.
Can the formula $(a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3(a+b)(b+c)(c+a)$ be directly used?

Can this problem be solved using mathematical induction?


Answer



Solution 1
Using Induction



We have $$(a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3(a+b)(b+c)(c+a)\implies(a+b)(b+c)(c+a)=0$$



Now, for $k$ we have



$$(a+b+c)^{2k+1}=a^{2k+1}+b^{2k+1}+c^{2k+1}$$

For $(k+1)$
$$(a+b+c)^{2k+3}=(a+b+c)^2(a+b+c)^{2k+1}=(a+b+c)^2(a^{2k+1}+b^{2k+1}+c^{2k+1})$$



$$(a+b+c)^{2k+3}=a^{2k+3}+b^{2k+3}+c^{2k+3}+(a+b)(b+c)(c+a)(\text{some factor})$$



(I've left the job of finding factor to you for observing pattern see here and here)



Using $(a+b)(b+c)(c+a)=0$
$$(a+b+c)^{2k+3}=a^{2k+3}+b^{2k+3}+c^{2k+3}$$




Solution 2



$$(a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3(a+b)(b+c)(c+a)\implies(a+b)(b+c)(c+a)=0$$
Either of $a+b,b+c,c+a =0$



$\implies (a+b+c)=a$ or $(a+b+c)=b$ or $(a+b+c)=c$



In any case $$(a+b+c)^{2n+1}=a^{2n+1}+b^{2n+1}+c^{2n+1}$$


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...