Given a3+b3+c3=(a+b+c)3.
Prove that for any natural number n,
a2n+1+b2n+1+c2n+1=(a+b+c)2n+1
I first tried mathematical induction but did not proceed anywhere.
Can the formula (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a) be directly used?
Can this problem be solved using mathematical induction?
Answer
Solution 1
Using Induction
We have (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)⟹(a+b)(b+c)(c+a)=0
Now, for k we have
(a+b+c)2k+1=a2k+1+b2k+1+c2k+1
For (k+1)
(a+b+c)2k+3=(a+b+c)2(a+b+c)2k+1=(a+b+c)2(a2k+1+b2k+1+c2k+1)
(a+b+c)2k+3=a2k+3+b2k+3+c2k+3+(a+b)(b+c)(c+a)(some factor)
(I've left the job of finding factor to you for observing pattern see here and here)
Using (a+b)(b+c)(c+a)=0
(a+b+c)2k+3=a2k+3+b2k+3+c2k+3
Solution 2
(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)⟹(a+b)(b+c)(c+a)=0
Either of a+b,b+c,c+a=0
⟹(a+b+c)=a or (a+b+c)=b or (a+b+c)=c
In any case (a+b+c)2n+1=a2n+1+b2n+1+c2n+1
No comments:
Post a Comment