Can you please explain why
$$
\sum_{k=1}^{\infty} \dfrac{k}{2^k} =
\dfrac{1}{2} +\dfrac{ 2}{4} + \dfrac{3}{8}+ \dfrac{4}{16} +\dfrac{5}{32} + \dots =
2
$$
I know $1 + 2 + 3 + ... + n = \dfrac{n(n+1)}{2}$
Answer
\begin{gather*}
|x|<1:\quad f(x)=\sum_{n=1}^{\infty} x^n=\frac{x}{1-x} \\
xf'(x)=\sum_{n=1}^{\infty} nx^n=\frac{x}{(1-x)^2}
\end{gather*}
Let $x=\frac{1}{2}$
No comments:
Post a Comment