Saturday, December 12, 2015

probability - show mathbbEvertXvert=inti0nftymathbbP(vertXvert>y)dyleqsumin=0nftymathbbPvertXvert>y.



Looking for a hint to show E|X|=0P({|X|>y})dyn=0P{|X|>y}.



This is from Theorem 2.3.7 in Durrett (Probability: Theory and examples)



The first equality makes sense by Fubini and the definition of expectation (Durrett Lemma 2.2.8). I'm having a hard time showing the second, though. My gut intuition makes me feel like it should be the other direction.


Answer




As you mention, the first equation is essentially Fubini, along with rewriting P{|X|>y} as an integral.



For the inequality on the right: observe that
0P{|X|>y}dy=n=0n+1nP{|X|>y}dyn=0n+1nP{|X|>n}dy=n=0P{|X|>n}
using the fact that for yx, P{|X|>y}P{|X|>x} since {|X|>y}{|X|>x}.



No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f:AB and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...