I am trying to evaluate the following:
$\displaystyle \int_{0}^{\infty} \frac{1}{1+x^a}dx$, where $a>1$ and $a \in \mathbb{R}$
Any help will be much appreciated.
Answer
Use the change of variables $1+x^\alpha=\frac{1}{t}$ to cast the integral in terms of the beta function
$$ \frac{1}{\alpha}\int_{0}^{1}t^{-1/\alpha}(1-t)^{1/\alpha-1}= \frac{1}{\alpha}\Gamma\left(\frac{1}{\alpha}\right)\Gamma\left(1-\frac{1}{\alpha}\right) $$
No comments:
Post a Comment