If sin2x + sin22x + sin23x = 1, what does cos2x + cos22x + cos23x equal?
My attempted (and incorrect) solution:
- sin2x + sin22x + sin23x = sin26x = 1
- sin2x=1/6
- sinx=1/√6
- sinx= opposite/hypotenuse
- Therefore, opp = 1, hyp = √6, adj = √5 (pythagoras theorum)
- cosx = adjacent/hypotenuse = √5/√6
- cos2x = 5/6
- cos2x+cos22x+cos23x=cos26x=5/6∗6=5
I think I did something incorrectly right off the bat at step-2, and am hoping somebody will point me in the right direction.
Answer
You know that sin2x+sin22x+sin23x=1(Eq.1)
Notice that sin2x+cos2x=1⇒sin2x=1−cos2x
Substituting the identity in Equation (1): sin2x⏟1−cos2x+sin22x⏟1−cos22x+sin23x⏟1−cos23x=1⇒1−cos2x+1−cos22x+1−cos23x=1⇒3−(cos2x+cos22x+cos23x)=1⇒2=cos2x+cos22x+cos23x
Therefore: cos2x+cos22x+cos23x=2
No comments:
Post a Comment